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Abstract
Speech recognition is invading our lives. It’s
built into our phones, our game consoles and
our smart watches. It’s even automating our
homes. The primary objective of automatic
speech recognition is to build a statistical model
to infer the text sequences from a sequence of
feature vectors. Recent advancements in net-
work frameworks, such as Connectionist Tem-
poral Classification or Deep Neural Belief Net-
works have allowed for substantial progress in
the scope of Acoustic Modeling. Our focus
is mainly on surveying the various networks
utilized for speech recognition and comparing
them. We also survey real-life applications of
many of the networks presented. The paper is
meant to be an introduction to acoustic model-
ing for individuals from various disciplines inter-
ested in Automatic Speech Recognition (ASR).

1. Introduction
In recent years, there has been an abundance of progress in
the field of automatic speech recognition and acoustic mod-
eling. These progresses have led to the creation of systems
that have enabled services such as Google Assistant, Mi-
crosoft Cortana, Amazon Alexa, Apple’s Siri, and count-
less others. Many of these achievements are powered by
deep learning techniques.

This paper will survey new developments shared by many
publications on this topic, as well as discuss core ideas pre-
sented in the work. More specifically, in Section 2, we fo-
cus our attention to the historical background of the field
of speech recognition in general, and how trying to achieve
acoustic modeling came about to be over the years. In sec-
tion 3, we expand on the primary resources that we will be
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Figure 1. As adapted from (Gevaert et al., 2010), this figure out-
lines the multiple steps for the purposes of speech recognition,
from the input of the acoustic environment, to signal processing,
which suppresses irrelevant sources of variation in the audio in-
put, to extracting speech specific features, to finally the classifica-
tion of these features and relation to the vocabulary set to produce
the desired output.

extrapolating information from. Section 4 delves into spe-
cific networks presented in depth such as the fundamen-
tal Hidden Markov Model, the Gaussian Mixture Model,
and deep neural networks that have emerged in more re-
cent studies as viable options for better results. As shown
in Figure 1, there are multiple steps required for proper out-
put, and these networks are the backbone for efficient and
accurate classification and output.

In Section 5, we present the various learning approaches
utilized for the most successful deep learning networks, as
well as show emerging advances in hybrid frameworks that
may not be as well-known or widespread such as connec-
tionist temporal classification (CTC). Due to the recent im-
pact that discoveries of neural networks have caused, Au-
tomatic Speech Recognition is now a subject of constantly
growing interest.

Section 6 focuses on the various applications that these
models and networks are used for currently and could pos-
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sibly be used for in the future. Some current technologies
that are outlined in this paper includes Bing’s Mobile voice
search application and advances of Google Assistant and
YouTube’s speech driven environments.

Finally, We propose core problems to work on and potential
future directions to solve them in section 7, where we also
summarize the main points that were presented through this
survey.

The aim of this work is to generalize the numerous ad-
vancements in the scope of speech recognition and provide
insight into the most recently discovered frameworks that
show promising results to the broader scientific commu-
nity. This paper will be useful for researchers working in
the field of machine learning or individuals looking for an
overview and are interested in speech recognition models.
This work will provide them with a survey of networks and
examples of applications where they have been used. Sim-
ilarly, scientists who are looking for a consolidated report
on the advancements of an extremely dense field can use
this as a brief introduction to a niche topic.

This systematic literature review of the progress made in
automatic speech recognition will focus on identifying and
analyzing the contributions of six key research papers that
have been published from 2005 to 2019 in the area of deep
neural networks in speech-related applications.

2. Historical Background
Speech is the most efficient way that humans use to com-
municate with each other. This also means that speech
could be a useful interface to interact with machines. For a
long time, research on how to improve this type of commu-
nication has been done. Some successful examples of using
machines to aid with communication includes the invention
of the megaphone and telephone. Even centuries ago, peo-
ple were experimenting on speech synthesis. For example,
in the late 18th century, Von Kempelen developed a ma-
chine capable of ”speaking” words and phrases (Gevaert
et al., 2010).

In the early 1970’s we begin to see a surge of interest in
the field of speech recognition, with sudden advancements
such as Dynamic Time Warping (DTW) to handle time
variability, a type of distance measure for spectral variabil-
ity. Then, in the mid to late 1970’s, we notice the introduc-
tion of the expectation-maximization (EM) algorithm, an
iterative method to find maximum likelihood estimates of
parameters in statistical models, a key feature for training
Hidden Markov Models (HMM). With the EM algorithm,
it became possible to develop speech recognition systems
for real-world tasks using the richness of Gaussian Mix-
ture Models (GMM) to represent the relationship between
HMM states and the acoustic inputs (Hinton et al., 2012).

By the mid 1980’s, HMMs had become the dominant tech-
nique for all types of automatic speech recognition. In
the following years leading into the 90’s, many of the cur-
rent state-of-the-art Large Vocabulary Continuous Speech
Recognition Systems (LVCSR), which are hybrids of neu-
ral networks and Hidden Markov Models (HMMs), begin
to emerge. The majority of the 2000’s has consisted of dis-
criminative training to reduce word and ”phone” error. In
this context, phone shall be defined as the perceptually dis-
tinct units of sound in a specified language that distinguish
one word from another.

Deep learning has become increasingly popular since the
introduction of an effective new way of learning deep neu-
ral networks (DNN) in 2006. DNNs have proved very suc-
cessful for acoustic modeling in speech recognition espe-
cially for large-scale tasks, and this success has been based
largely on the use of the back-propagation algorithm with
rather standard, feed-forward multi-layer neural networks.
In addition to improved learning procedures, the main fac-
tors that have contributed to the recent successes of deep
neural networks have been the availability of more comput-
ing power, and the availability of more training data. The
initial breakthrough in acoustic modeling was triggered by
the use of a generative, layer-by-layer pre-training method
for initializing the weights before running the discrimina-
tive back-propagation learning procedure, but subsequent
research has revealed that generative pre-training is unnec-
essary when there is a very large amount of labeled training
data. Back-propagation can be started from random initial
weights given that their scales are carefully determined to
prevent the initial error derivatives from being very large or
very small (Deng et al., 2013).

More than a year ago, four research groups wrote an
overview article called ”Deep neural networks for acoustic
modeling in speech recognition” in which they presented
their shared views on applying DNNs to acoustic modeling
in speech recognition. Since then, the four groups and other
speech or machine learning groups around the world have
done a lot of new work developing new models and learn-
ing methods, and performing new evaluation experiments
(Deng et al., 2013; Hinton et al., 2012). This overview pa-
per will be extensively referenced in this work as well due
in large part to the immense contributions they have out-
lined for ASR.

3. Related Work
Our work in surveying the field of Automatic Speech
Recognition and Acoustic modeling draws information
from many fundamental publications dating back to 2005.
Riccardi et al. showed promising results to solve the prob-
lem of adaptive learning in the context of ASR. The paper
proposes an active learning algorithm for this specific pur-
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Figure 2. This image accurately sums the overall structure of an ASR network, from the acoustic input, to the application of the hybrid
models, which will be described later in this paper, to the end result. Image adapted from (Gevaert et al., 2010; Hinton et al., 2012;
Gales & Young, 2007; Gevaert et al., 2010)

pose (Riccardi & Hakkani-Tür, 2005).

Over the years, researchers realized the ease of applica-
tion for HMMs as a viable solution for the speech recog-
nition problem, and the research for advancements of such
a model also became more substantial. In 2010, Gavaert et
al. produced a study to investigate speech recognition clas-
sification performance. Their main goal of the paper was
to analyze how well models such as HMMs and other neu-
ral networks fared in terms of handling the biggest issues
that many of the previous models have encountered be-
fore. Some these issues, as presented in this work, include
Speaker Variation, where the same word is pronounced dif-
ferently by different people due to various attributes such as
age, sex, anatomic variations, speed of speech, etc. Back-
ground noise and even issues such as the influence of into-
nation and stress on certain syllables when spoken are om-
nipresent impediments for many of these models and their
structures. Several of these points as addressed in Gavaert
then became a foundation for analyzing the proficiency of
speech recognition networks (Gevaert et al., 2010).

By 2012 and 2013, there were several new types of net-
works that showed promising results, resulting in the pub-
lication of ”New Types of Deep Neural Network Learn-
ing for Speech Recognition and Related Applications: An
Overview” by Deng et al. In that paper, Deng provides an
brief summary of a multitude of other papers presented at
a special session dealing with applications of deep neural
networks for ASR in 2013. The technical overview of the
papers presented was then organized into five main points
on how to improve existing deep learning methods, much
of which was based on similar fundamental issues proposed
in previous works such as Gavaert et al.:

(1) Better optimization

(2) Better types of neural activation function and better net-
work architectures

(3) Better ways to determine the myriad hyper-parameters
of deep neural networks

(4) More appropriate ways to preprocess speech for deep
neural networks

(5) Ways of leveraging multiple languages or dialects that
are more easily achieved with deep neural networks than
with GMMs (Deng et al., 2013).

As previously referenced in the Section 2, perhaps the most
influential work in this field comes from a paper written in
conjunction with four separate research groups led by Hin-
ton et al., each presenting a singular study regarding deep
neural networks for acoustic modeling in speech recogni-
tion. This work has been fundamental in reviewing the suc-
cesses achieved using pretraining, and how this has led to a
resurgence of interest in Deep Neural Networks for Acous-
tic Modeling.

Usually, HMMs and GMMs have been the leading appli-
cations for speech recognition systems to show how well
each state of each HMM fits a frame or a short window
of frames of coefficients that represents the acoustic input.
An example structure of a hybrid model network can be
seen in Figure 2. This study by Hinton et al. proposes
an alternative way to evaluate the same fit, instead by us-
ing a feed-forward neural network that takes several frames
of coefficients as input and produces posterior probabilities
over HMM states as output (Hinton et al., 2012).

The papers that followed the survey produced by Hinton
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et al. mainly focused on the hybrid models of neural net-
works and HMMs. This is what is currently used in many
of the current state-of-the-art LVCSRs. Most of the sys-
tems contain separate components that deal with acoustic
modeling, language modeling, and sequence decoding. In
their work, ”End-to-End Attention Based Large Vocabu-
lary Speech Recognition,” Bahdanau et al. investigate a
more direct approach in which the HMM is replaced with a
Recurrent Neural Network (RNN) that performs sequence
prediction directly at the character level (Bahdanau et al.,
2016).

In the most recent works that this survey will refer to, the
overarching studies revolve around models and frameworks
that allow for peak performance such as Connectionist
Temporal Classification Frameworks (CTC) and Deep Be-
lief systems. The success of these systems come from the
emphasis placed on training of feature vectors and acoustic
modeling adaptation. By increasing the number of features
and including more layers in the network to increase the
number of parameters, we are able to produce Deep Belief
Networks. As explained in recent papers, feed forward neu-
ral networks offer several potential advantages over state-
of-the-art GMMs that have been dominating the ASR field
till now:

• Their estimation of the posterior probabilities of HMM
states does not require detailed assumptions about the data
distribution.

• They allow an easy way of combining diverse features,
including both discrete and continuous features.

• They use far more of the data to constrain each parameter
because the output on each training case is sensitive to a
large fraction of the weights.

As evident by the results produced in papers by Yu et al.
and Mohamed et al., it is safe to say that Deep Belief Net-
works and CTC frameworks are the best structures for ASR
as of right now.

4. Types of Networks
The focus of this paper will be mainly assessing the vari-
ous types of networks that have been used for the purpose
of ASR. There have been numerous models that have been
proved to be effective over the years, including, but not lim-
ited to HMMs, GMMs, RNNs, CNNs, as well as hybrid
frameworks and deep belief networks. In the following sec-
tions, we will discuss the structure of each of these models
and why they have proved to have been effective, as well
as compare them to see how certain solutions are touted as
better for attention based acoustic modeling.

Figure 3. Here we see exactly how the HMM tends to work given
an acoustic input. The final sentence model is created by concate-
nating the correct phone models. Figure adapted from (Gales &
Young, 2007).

4.1. Hidden Markov Model (HMM)

Hidden Markov Models (HMMs) provide a simple and ef-
fective framework for modeling time-varying spectral vec-
tor sequences. As a consequence, almost all present day
LVCSR systems are based on HMMs.

Until now, this is the most successful and most used pattern
recognition method for speech recognition. It’s a mathe-
matical model derived from a Markov Model. For the pur-
poses of ASR, we use a slightly adapted Markov Model.
Speech is split into the smallest audible entities. All these
entities are represented as states. As a word enters the Hid-
den Markov Model it is compared to the best suited entity.
According to transition probabilities, there exist a transition
from one state to another. A state can also have a transistion
to it’s own state if the sound repeats itself. Markov Models
seems to perform quite well in noisy environments because
every sound entity is treated separately. If a sound entity is
lost in the noise, the model might be able to guess that en-
tity based on the probability of going from one sound entity
to another, as seen in Figure 3 (Gevaert et al., 2010).

Most current speech recognition systems use HMMs to
deal with the temporal variability of speech, while relying
on GMMs to determine how well each state of each HMM
fits a frame or a short window of frames of coefficients that
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Figure 4. This image shows the architecture of an HMM, from
the reception of the auditory input, to analyzing feature vectors,
and finally finding the internal states given these observations to
produce results.

represents the acoustic input (Hinton et al., 2012).

After the adoption of hybrid models, we slowly begin to
see how the DNN/HMM architecture has emerged as the
dominant model used in industry. One of the important
factors that lead to superior performance in the DNN/HMM
hybrid system is its ability to exploit contextual information
(Yu & Li, 2018).

HMM ARCHITECTURE

A Markov chain contains all the possible states of a sys-
tem and the probability of transiting from one state to an-
other. A first-order Markov chain assumes that the next
state depends on the current state only. However, in many
ASR systems, not all states are observable and we call these
states hidden.

The probability of observing an observable given an inter-
nal state is called the emission probability. The probability
of transiting from one internal state to another is called the
transition probability. An HMM is modeled by the tran-
sition and the emission probability. For speech recogni-
tion, the observable is the content in each audio frame. We
can use the Mel Frequency Cepstral Coefficient (MFCC),
which is a representation of the short-term power spectrum
of a sound, parameters to represent it (Gales & Young,
2007).

Given an HMM model is learned, we can use the forward
algorithm to calculate the likelihood of our observations.
The main objective is to sum the probabilities of the obser-
vations for all possible state sequences, and can be calcu-
lated by this formula:

p(X) =
∑
s

p(X,S) =
∑
s

p(X|S)p(S) (1)

This formula states how p(X), or the probability of ob-

served events, is equal to the sum over all possible time
sequences of internal states, which is equal to and can be
calculated by finding the summation of the products of the
emission probability and the transition probability as de-
scribed above.

Next, given the HMM model, we must find the internal
states given the sequence of observations. This process is
called decoding, as depicted in the structure described in
Figure 4. If we have an audio clip, the internal states rep-
resent the phones. Decoding allows us to find the internal
states that maximize the likelihood of observations.

4.2. Gaussian Mixture Model (GMM)

A Gaussian Mixture is a function that is comprised of sev-
eral Gaussians. The EM algorithm, as explained in Sec-
tion 2, is used to estimate the parameters of the GMM.
The extracted parameters: the means, standard deviations
and component weights can be related to each location of
several prominent bands of frequency that determine the
phonetic quality of a vowel, bandwidths and magnitudes.
As the features directly represent the linear spectrum, it is
possibly to apply techniques for vocal tract length normal-
isation and additive noise compensation techniques.

GMM strengths showcase how with enough components,
they can model probability distributions to any required
level of accuracy, and they are fairly easy to fit to data using
the EM algorithm (Hinton et al., 2012).

A huge amount of research has gone into finding ways of
constraining GMMs to increase their evaluation speed and
to optimize the trade-off between their flexibility and the
amount of training data required to avoid serious overfit-
ting.

Despite all their advantages, GMMs have a serious short-
coming, the fact that they are statistically inefficient for
modeling data that lie on or near a nonlinear manifold in
the data space.

Since GMMs are non-linear models, it assumes that each
data point is generated by a single component of the mix-
ture so it has no efficient way of modelling multiple simul-
taneous events.

Speech is produced by modulating a relatively small num-
ber of parameters of a dynamical system and this im-
plies that its true underlying structure is much lower-
dimensional than is immediately apparent in a window that
contains hundreds of coefficients. According to Hinton et
al., other types of models may work better than GMMs for
acoustic modeling if they can more effectively exploit in-
formation embedded in a large window of frames (Hinton
et al., 2012).

Deep neural networks that have many hidden layers and
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are trained using new methods have been shown to out-
perform GMMs on a variety of speech recognition bench-
marks, sometimes by a large margin (Deng et al., 2013;
Hinton et al., 2012; Gevaert et al., 2010).

4.3. Recurrent Neural Network (RNN)

Another key approach that many researchers have used for
the purposes of Automatic Speech Recognition includes
Recurrent Neural Networks.

The use of recurrent neural networks for acoustic modeling
was pioneered by Tony Robinson, but quickly fell out of
favor because of the difficulty of training them. Recently,
however, RNNs have achieved excellent results at language
modeling and the use of multiple hidden layers has allowed
them to outperform all other methods on a TIMIT dataset
(Deng et al., 2013).

The success of modern RNNs for the purposes of Speech
Recognition can probably be explained to a large extent by
the elegant way in which they can deal with sequences of
variable length.

To obtain a model that uses information from both future
frames and past frames, one can pass the input data through
two recurrent neural networks that run in opposite direc-
tions and concatenate their hidden state vectors. Recurrent
neural network of this type are often referred to as bidirec-
tional RNNs.

Finally, it has been shown that better results for speech
recognition tasks can be obtained by stacking multiple lay-
ers of recurrent neural networks on top of each other (Bah-
danau et al., 2016; Deng et al., 2013). This can simply be
done by treating the sequence of state vectors as the input
sequence for the next RNN in the pile. Two bidirectional
RNNs can be stacked on top of each other to construct a
deep architecture.

LSTM-RNNs use input, output and forget gates to control
information flow. This is so that gradients can be perfected
over relatively longer span of time. These networks have
been shown to outperform DNNs on a variety of ASR tasks
(Yu & Li, 2018).

4.4. Convolutional Neural Network (CNN)

Although convolutional models achieved good classifica-
tion results, applying them to phone recognition is not
straightforward. This is because temporal variations in
speech can be partially handled by the HMM component
and those aspects of temporal variation that cannot be ad-
equately handled by the HMM can be addressed more ex-
plicitly and effectively by hidden trajectory models (Hin-
ton et al., 2012).

For the reason stated above, CNNs, similarly to RNNs, also

showed early promise for acoustic modeling but were later
abandoned, probably because the convolution was done
across time rather than across frequency.

The driving force behind the success of CNNs however, is
due to the convolutional layer. The input to the convolu-
tion operation is usually a three-dimensional tensor (row,
column, channel) for speech recognition.

Because of the translational invariability, CNNs can ex-
ploit variable-length contextual information along both fre-
quency and time axes (Bahdanau et al., 2016). If only one
convolution layer is used, the translational variability the
system can tolerate is limited. To allow for more powerful
exploitation of the variable-length contextual information,
convolution operations (or layers) can be stacked (Hinton
et al., 2012), very similar to the structure of the RNN as
described in the section above.

As described, temporal variation is already well-handled by
the HMM so convolution across frequency is much more
helpful because it provides partial in-variance to changes
in the properties of the vocal tract (Bahdanau et al., 2016).
Hinton et al. also demonstrated that convolution across fre-
quency was very effective for TIMIT.

Convolutional neural networks are also useful for LVCSR
and further demonstrates that multiple convolutional layers
provide even more improvement when the convolutional
layers use a large number of convolution kernels, such as
feature maps.

4.5. Connectionist Temporal Classification Framework
(CTC)

Deep CNNs can be used together with RNNs and under
frameworks such as a Connectionist Temporal Classifica-
tion Framework (CTC). CTCs allow for a sequence-to-
sequence direct optimization (Yu & Li, 2018), as well as
RNNs to predict sequences that are shorter than the input
sequence by summing over all possible alignments between
the output sequence and the input of the CTC module.

This summation, as mentioned above, is done using dy-
namic programming in a way that is similar to the forward
and backward passes that are used in HMM, and as de-
scribed in section 4.1. In the CTC approach, output la-
bels are independent, given the alignment and the output
sequences. In the context of speech recognition, this means
that a CTC network lacks a language model, which greatly
boosts the system performance when added to a trained
CTC network (Bahdanau et al., 2016).

Speech recognition tasks are a sequence-to-sequence task,
which maps the input waveform to a final word sequence
or an intermediate phoneme sequence. For the purposes of
acoustic modeling, output of word or phoneme sequence is
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of utmost importance, instead of the frame-by-frame label-
ing which the traditional cross entropy training criterion is
focused on. Hence, CTCs are introduced to map the speech
input frames into an output label sequence. As the num-
ber of output labels decreases below the number of input
speech frames, CTC path is introduced to force the out-
put to have the same length as the input speech frames by
adding blank as an additional label and allowing repetition
of labels (Yu & Li, 2018).

The most attractive characteristics of CTC is that it pro-
vides a path to end-to-end optimization of acoustic models.
The end-to-end speech recognition system is explored to
directly predict characters instead of phonemes, hence re-
moving the need of using lexicons and decision trees. This
is one step toward removing expert knowledge when build-
ing an ASR system. Another advantage of character-based
CTC is that it is more robust to the accented speech as the
graphoneme (the smallest meaningful contrastive unit in a
writing system) sequence of words is less affected by ac-
cents than the phoneme pronunciation.

Lastly, the end-to-end optimization strategy is desired,
given its simplicity and joint optimization characteristics,
if we only need to optimize for the decoding result and
have sufficient training data. This has been proven effec-
tive with word-based CTCs when trained with hundreds of
thousands hours data. However, the one downside to this
is that it is not feasible to get that large amount of data for
most tasks. (Yu & Li, 2018).

4.6. Deep Belief Networks

Deep Belief Networks (DBN) are capable of making good
use of the more detailed information available in this larger
input representation. The availability of more layers within
a network inherently allows DBNs to perform better among
other networks mentioned in this work, as described in the
following section of this paper.

The characteristic of a deep belief network is similar to a
neural network. The performance of a neural network de-
pends on the structure itself and it is suitable to select the
model and size of the network for the data to handle. Deep
belief networks have the advantage in speech recognition as
it generates the feature learning with a subsequent stage of
supervised learning, once the network initialized, the first
way using unsupervised and then fine-tuned with the la-
beled data to train some neuron in initial weight vectors.
Deep belief networks have many nonlinear hidden layers to
produce posterior of probabilities that take several frames
of coefficient as input (Mohamed et al., 2010).

Figure 5. Adapted from (Mohamed et al., 2010), this figure de-
picts the Phone error rate as a function of the number of layers of
a DBN, using 11 input frames.

5. Learning
When GMMs were first used for acoustic modeling, they
were trained as generative models using the EM algorithm,
and it was some time before researchers showed that sig-
nificant gains could be achieved by a subsequent stage of
discriminative training using an objective function more
closely related to the ultimate goal of an ASR system (Hin-
ton et al., 2012).

Currently, the biggest disadvantage of DNNs compared
with GMMs is that it is much harder to make good use of
large cluster machines to train them on massive data sets
(Hinton et al., 2012).

The TIMIT data set provides a simple and convenient way
of testing new approaches to speech recognition. The train-
ing set is small enough to make it feasible to try many vari-
ations of a new method and many existing techniques have
already been bench marked on the core test set, so it is easy
to see if a new approach is promising by comparing it with
existing techniques that have been implemented by their
proponents (Gales & Young, 2007).

Mohamed et. al. showed that a DBN-DNN acoustic
model outperformed the best published recognition results
on TIMIT. Similarly, other publications around that time
also achieved a similar improvement on TIMIT by apply-
ing state-of-the-art techniques developed for large vocabu-
lary recognition.

Training DBNs of various sizes as mentioned in this pa-
per is quite computationally expensive (Mohamed et al.,
2010). All DBNs were pre-trained with a fixed recipe us-
ing stochastic gradient decent with a mini-batch size of 128
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training cases. Currently DBN-DNN architectures often
performed best on the development sets reported. As we
can see in Figure 5. the overarching trend of the graph
shows how as the number of layers of a given network
decreases, the phone detection error rate also tends to de-
crease. All methods use MFCCs as inputs (Hinton et al.,
2012).

When neural nets were first used, they were trained dis-
criminatively. It was only recently that researchers showed
that significant gains could be achieved by adding an initial
stage of generative pretraining that completely ignores the
ultimate goal of the system. The pretraining is much more
helpful in deep neural nets than in shallow ones, especially
when limited amounts of labeled training data are available.
It reduces overfitting, and it also reduces the time required
for discriminative fine-tuning with back propagation.

6. Applications
The first successful use of acoustic models based on DBN-
DNNs for a large vocabulary task used data collected from
the Bing mobile voice search application (BMVS). The
task used 24 h of training data with a high degree of acous-
tic variability caused by noise, music, side-speech, accents,
sloppy pronunciation, hesitation, and numerous others as
mentioned previously in this paper. The results reported in
Hinton et al. demonstrated that the best DNN-HMM acous-
tic model trained with context-dependent states as targets
achieved a sentence accuracy of 69.6 percent on the test
set, compared with 63.8 percent for a fairly well trained
GMM-HMM baseline (Hinton et al., 2012).

The DNN-HMM training recipe developed for the Bing
voice search data was applied unaltered to the Switchboard
speech recognition task, a large multi speaker corpus of
conversational speech and text, to confirm the suitability
of DNN-HMM acoustic models for large vocabulary tasks.

Other notable applications of such networks can be seen
through advancements by Google. Google Voice Input, a
key feature of many Google products, including Google
Assistant, transcribes voice search queries, short messages,
e-mails, and user actions from mobile devices. This is a
large vocabulary task that uses a language model designed
for a mixture of search queries and dictation. Google’s full-
blown model for this task, which was built from a very large
corpus, uses a GMM-HMM model. Similarly, this applica-
tion goes hand in hand with YouTube’s own speech recog-
nition task, which employs the same model and structure
(Hinton et al., 2012).

7. Summary
This paper surveyed new developments shared by many
publications on the topic of ASR, as well as discuss core
ideas presented in these presented works. By delving into
specific networks such as the fundamental Hidden Markov
Model, the Gaussian Mixture Model, and deep neural net-
works, we discussed the impact that each of these models
have had on the scope of the field. Through our analy-
sis of these papers, we have found that there are promis-
ing results presented for CTC frameworks and deep belief
networks. These models may be potential avenues that re-
searchers may want to explore further in the future.

This all being said, there is no reason to believe that we are
currently using the optimal types of hidden units or the op-
timal network architectures, and it is highly likely that both
the pretraining and fine-tuning algorithms can be modified
to reduce the amount of overfitting and the amount of com-
putation. We therefore expect that the performance gap be-
tween acoustic models that use DNNs and ones that use
GMMs will continue to increase for some time.
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